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Abstract

We propose a theory of learning from unclassified data. The learn-

ing problem is that of finding the parameters of a stochastic process

that best describes the incoming data stream. Special attention is

given to the elliciency of the learning proceu, similar to Valiaat's the-

ory of supervised learning, and in contrast to conventional pattern

recognition approc,=hes. Illustrative domains are constructed and an-

alyzed.

1 Introduction

Supervised concept learning occurs when a teacher presents the learner with

data labeled according to whether the items are examples or counterexam-

pies of the target concept. The learner must then solve a search problem in

a pre-designated concept class. Unsupervised learning omits the teacher,

and as a result the nature of the problem changes in an essential way. In

this paper we ask what it means for a hypothesis class to be learnable in an

unsupervised setting, and if it is learnable, what it means to be efficiently

learnable.

For supervised learning, others have given precise mathematical defini-

tions of such terms as "learnable" and "efficiently learnable" (e.g., [32]).

This work can be viewed as extending these notions to the unsupervised

case. Among the useful results of this work are
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2 UNSUPERVISED LEARNING: A MODEL 2

• a definite scope for the problem, with clear definitions of such conno-

tative terms as "learn" and "converge" and "approximate".

the ability to account for noise and temporal dependence among the

examples.

• a framework for constructing representations and analyzing their com-

plexity in an unsupervised setting.

First we shall describe informally our vision of unsupervised learning,

and relate it to other research. We then formalize the learning problem by

defining our model classes and the learning criteria. To illustrate the con-

cepts, we discuss three simple, but non-trivial, model classes. Construction

of more powerful models along with algorithms to learn them are topics for

subsequent research.

2 Unsupervised Learning: a Model

Let us envision the learner as receiving a stream of input data, either as a

continuing sequence of characters (e.g., bits I or as blocks of data, such as

vectors or strings. In any case, the data are discrete, both in structure and

in time. Initially the learner perceives the input as random, since he/she/it

has no prior basis for expectation or prediction. In time, however, patterns

are discerned and regularities classified, until the learner is less surprised by

what he sees. Ideally such a learner reaches the point where he can predict

the next input unit with 100_ accuracy. When randomness is inherent in

the data, however, this ideal is unattainable without omniscience.

Consider, for example, a stream of input bits generated by independent

flips of a biased coin. What form should the learner's predictions take,

and how should his predictions be evaluated? The learner might elect to

guess the outcome of the next flip, and receive some numerical credit or

penalty. But a more general approach - indeed, the one adopted for many

statistical pattern recognition problems, and the one we adopt here - is

to make predictions in the form of a probability distribution (P[H],P[T]).

Then if an explicit prediction of the outcome of the next coin flip is required,

and there are established rewards for good predictions and penalties for
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bad ones, we can base our prediction on these criteria using established

techniques from decision theory. But these techniques begin with having

the probabilities at hand, and the purpose of our learning model is to

estimate these probabilities.

Simon [30] defines learning as "changes in the system that ... enable the

system to do the same task or tasks ... more efficiently and more effectively

the next time." When a system learns probabilities, it may not actually be

improving the performance of the system; but it is improving the potential

for such performance. So we offer this enhancement to Simon's otherwise

useful definition.

In summary, we are treating unsupervised learning as the inference of a

probabilitlt distribution for the nezt input unit. We shall see that this defi-

nition is flexible enough to cover situations where the particular temporal

sequence of input units is not of concern, as well as those in which the

temporal aspects axe significant.

3 Overview of Related Work

Unsupervised learning has been studied experimentally in a variety of situ-

ations, including sequence extrapolation, classification and clustering, time

series analysis, and adaptive control theory. In each case, the general ob-

jective is to infer the underlying structure of the data without benefit of

feedback from a teacher. Often it is difllcult to compare the various ap-

proaches, despite the sense that they are closely related, and we shall not

attempt to do so here in any comprehensive way. Instead we identify that

work seen as having similar objectives and methods, for the purpose of

giving context to the current results.

3.1 Supervised Learning: Convergence

Much of the inductive learning work of the past twenty-five years has cen-

tered on the problem of searching a set of descriptions for one which best

accounts for the observed data [6, 14, 23, 28]. With guidance from an infal-

lible tutor, the input data serve to eliminate incorrect hypotheses. Conse-

quently, an exhaustive-search technique is effective, but slow, for identifying
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a correct description,assuming one existsin the space of descriptions. We

shall say that a class of descriptions is identifiable (or learnable in the limit)

if there is a procedure that takes examples from an arbitrary, but exhaus-

tive, presentation and outputs an infinite series of hypothesis descriptions,

such that these hypotheses are correct (equivalent to the one responsible

for the examples) all but finitely many times.

Absent from most of these studies has been the notion of convergence

in the Cauchy sense - i.e., progressive improvement in the description as

more data are received. This element was provided by a model suggested by

Valiant [32], and since extended by others. Good descriptions of the theory

(often called learnability theory) are available (e.g., [15]), so we mention

here only a few relevant aspects.

Concept: A subset of some universe X, expressible by at least one rule

in s fixed class of hypotheses {the concept class).
Example: An element of X, positive if it belongs to the target concept,

negative otherwise.

Teacher: Selects examples independently and randomly from some prob-

ability distribution P over the set of examples, and classifies

them for the learner as exemplifying or counter-exemplifying

the target concept.

Learner: Knows only the concept description class and two parameters,

c and 6, stipulating how accurately he is expected to identify

the target concept. In particular, the learner does not know

the distribution P.

Learning is viewed as a finite process: the algorithm outputs a concept C

and halts. We say that the concept C has error _ with respect to C., the

target, if the probability (measured by P) is _ that a random example of C.

is a counterexmmple for C, or vice versa. Since the selection of examples is

a probabilistic process, one cannot require a learning algorithm to achieve

a given accuracy with certainty. /nstead, one imposes an upper limit 6 on

the probability that the algorithm chooses a hypothesis with more than

error as a result of seeing an unrepresentative sample.

A concept description class ¢ is said to be learnable if there exists an

algorithm £ that, with inputs _, 5 > 0, requires only a finite number of

classified examples of any target concept C. E ¢ in order to output an

approximate concept C. Furthermore, the error of C with respect to C.
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is less than c, with high probability (> 1 - 6). Note that _ must achieve

this regardless of the distribution P of the examples. If no such algorithm

exists, the class is not learnable. A useful characterization of what classes

are/are not learnable is given in [7].

Often a concept class may be useful on small problems, but when scaled

up to express larger concepts, the complexity of the learning problem grows

so rapidly that it becomes intractable. To study this, we associate a growth

parameter n with the concept class C (e.g., the number of attributes I and

characterize the complexity growth of the family C, as follows.

A concept class ¢, is said to be effciently learnable if, for all n,

1. C, is learnable;

2. the number of examples required by the learning algorithm £. is

bounded by a polynomial in n, 1/_, and 1/6;

3. £. processes those examples in time bounded by a polynomial in the

size of the examples 1.

Families satisfying the first two properties are said to be data efficient. It

is not unusual for a family to be known to be data-e_cient but not known

to be e_ciently learnable (e.g., [8, 19]).

Note that this definition limits the number of concepts in C, to 0 (2P°lY(n)),

since otherwise we cannot in the worst case even write down the result in

polynomial time.

The theory of learnability has attracted much research interest, in large

measure because it enables us to analyze and compare the inherent com-

plexity of concept classes and their representations. The same issues are

of interest in unsupervised learning; but it is not at all obvious how to

formulate the definitions for the unsupervised case.

3.2 Unsupervised Learning: Pattern Identification

Statistical pattern recognition is a mature branch of statistics originating

from early work of Pearson and proceeding with particular energy in many

directions since the 1960's. The nature of pattern recognition problems

Xln some studies, the sise of the concept i_ also considered.
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in general is to classify data in a meaningful and useful way. Sometimes

this means discovering inherent relationships in the data; at other times it

means viewing the data the way a human does. Both tutored and untutored

problems have been investigated extensively. [10] and [35] each contain

readable surveys of various approaches to the field, as well as annotated

bibliographies. Here we shall note only the work pertaining to identification

of finite mixtures (for which [11] is a good, recent reference) and some of

the work on Markov chains, since these are most closely related to the

data-modeling ideas presented below.

Finite mixtures. We can imagine a population consisting of a mixture

of N component populations over the same vector space X. With the i'th

component distribution f_, we associate a probability p_. )'_ is assumed

to be parameterized by some finite set of values ,_, which we indicate by

writing f,(x 1,_ ) (x E X). The mixture distribution f is then given by

N

/ix) = _p,f, lX [,\,).

Intuitively, the process described by such a distribution k one in which a

population is selected with probability p_, and then a vector is drawn from

that population according to the probability distribution f_. The learning

problem is to identify N, the p_, and ,_ from independent random samples

of the population distributed according to f. Note that the distributions

may overlap - i.e., the same vector may be selected in different ways if it

is part of two or more populations.

Three main issues arise in connection with the finite-mixture problem.

1. Is the mixture identifiable? By standard terminology, a mixture

is identifiable if for no two distinct sets of parameters iN, p's, _,'s) does

the same mixture distribution result. By this definition, most mixtures

of discrete families of distributions (including f's drawn from binomial or

uniform distributions) are not identifiable, whereas many mixtures of con-

tinuous families (including multivariate normal distributions) are identifi-

able. Yakowitz and Spragins [34] showed that identifiability is equivalent

to linear independence of the family of component distributions.

2. How large a sample of the population is required to identify the

mixture components? For statisticians, data efllciency is exhibited when
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the metric difference between the true mixture and the sample mixture de-

creases exponentially with the sample size. A celebrated theorem of Kiefer

and Wolfowitz [20] states (roughly): the probability that the difference be-

tween the cumulative distribution function (CDF) of the mixture F(x) and

the sample CDF Ft(x), as measured by the sup norm

supIP,Cx)- FCx)l,
x

-k2
exceeds _/V_ is less than ce , for all t > 0, all _ > 0, and some values of

c and b that depend on the dimensionality of the vector space. From this it

is straightforward to show that the CDF distributions satisfy a learnability

property: for any positive c and 6, a sample of size t polynomial in I/e and

log 1/6 suffices to ensure that Ft is within E of F with probability 1 - 6.

3. What algorithm do we use to estimate the parameters from a finite

sample? The algorithmic expression of the estimation problem in statisti-

cal language is that of finding a consistent estimator for the parameters,

given a sample of t data points. This estimator may be expressed as a

computable function or as an algorithm. Since most of the results of this

field were obtained before complexity theory matured as a mathematical

theory, little attention has been paid to the computational complexity of

computing the estimator. Furthermore, the sample size required for a given

confidence and tolerance is often hard to determine. Yakowitz [33] showed

that an effectively computable consistent estimator exists for an identifiable

mixture family, subject to some continuity conditions on the parameters.

In a maximum-likelihood estimation approach, a sample of data is ob-

tained and the mixture with the highest probability (likelihood) of produc-

ing the sample is selected as the hypothesis. In order to find estimators

for the maximum-likelihood mixture distribution, the analytical forms of

the distributions I_(x I A) are substituted into the likelihood function, and

an attempt is made to maximize this function over the parameters and

the values of the sample data. Except in special cases this produces a

closed-form expression that is exponential in the size of the sample. Hence

various approximation techniques have been devised in an effort to render

the mathematics more tractable. ....

Bayesian estimation has also received considerable attention as an es-

timation procedure. Here the idea is to compute the posterior probabil-

ity p(A I xs,...,xt) from Bayes' rule, the likelihood pCxl,...,xt I A), and
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a prior distribution p(),) over the parameters. The choice of priors has

been a recurrent source of controversy for Bayesian statistics, but this has

been largely resolved with the work of Tribus, Jaynes, Shore, and others.

Starting with a minimally informative prior, one can obtain a recursive

procedure which uses each successive data point to compute an estimate of

a new prior distribution p(_) and and estimate of the parameters _. Many

studies have obtained conditions under which this procedure converges to

valid parameters; for example, Aoki [3] obtains such results by applying

the Martingale convergence theorem. In general, the Bayesian approach,

starting from minimally informat[ve priors, and the maximum-llkelihood

approach give the same results provided there is sufficient data to distin-

guish a good choice from a poor one. Bayesian methods are most useful

when the sample size is not known to be su/_cient for such a determination,

and when other knowledge is available to guide the choice of parameters.

Most of this work assumes that the number N of components in the

mixture is known. However, Cheeseman and colleagues [9] have applied

Bayesian techniques to determine both the mixture distributions and the

number of components for normal distribution families, and applied the

theory to a number of data sets of different kinds. From the viewpoint of

modeling, however, the Bayesian approach has the drawback that a dis-

tribution over the parameter space must be computed, and in general this

can be costly. A complexity analysis of Bayesian learning would be a useful

study.

Markov models. The unifilar Markov-chain model originated With the

early work of Shannon, McMillan, Breiman, and others in information the-

ory. The first asymptotic convergence results for the entropy of such a

process also date from this work. Markov modeling, subject to a vast ar-

ray of assumptions and conditions, has been applied to problems ranging

from speech recognition to cell biology under the generic label of "hidden

Markov models _ . Such a model consists of a finite Markov chain with, say,

n states, and a set of n probability density functions .f,, one for each state in

the chain. From its current state, the Markov process makes a transition to

some state a, but the actual state of the process is not observable. Instead,

a symbol x E X is selected according to the distribution/o and presented

to the learner, whose task is to infer the underlying chain and associated
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distributions.

Baum and Petrie [4] demonstrate a maximum-likelihood convergence

property for chains with a given number of states. Later, in the course of

trying to apply this result, Baum and others [5] developed the re-estimation

algorithm for determining the maximum-likelihood parameters of a given

chain. Many applications of this algorithm have been devised, particularly

in speech recognition applications (e.g., [22]) where the structure of the

underlying chain can be chosen _cording to linguistic principles.

A different, but closely related, class of Markov models is obtained by

associating with each transition of a Markov chain a symbol x from a finite

set X. Thus from a given state 8, the process selects a transition from s

to another state s r, according to the probability p,,,, assigned to that tran-

sition, and emits the symbol associated with that transition. The learning

problem, again, is to infer the structure and parameters of the chain re-

sponsible for the observed sequence of symbols. Rudich [25] studied this

problem using a maximum-likelihood strategy, with the goal of identifying

the minimum-size chain in the limit from an infinite sample, assuming that

the transition probabilities are rational. He considers first the case where

an upper limit is provided on the number of states of the target chain, and

later the case where no such limit is known. Unfortunately his results were

only incompletely presented.

In none of the above work, however, is the computational complexity

of finding or using the models considered. Indeed, in view of the fact that

in actual applications statistically dependent sample data is the norm, not

the exception, it is remarkable that learning from other than independent

data has been so consistently avoided in the literature.

4 Unsupervised Learnabillty

This section presents our formal model of unsupervised learning. We need

to address four questions:

1. Just what are we learning?

2. How is the target presented?
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3. What are the criteria for learning? Specifically, when is a class learn-

able, and when is it efficiently learnable?

4. Given these criteria, what classes are/are not learnable?

4.1 Model Classes

Recall that unsupervised learning entails extracting predictable aspects

from an apparently random input stream. We call the representation of

our predictions a mode/.

Before seeing the formal, definitions, we can benefit from an informal

preview of the ideas. Let the input stream be zl,z2,... ,zt,... taking val-

ues in the finite set X. A model M is a procedure that, after receiving as

input xl,..., z,-i but before receiving z,, is capable of computing a (con-

ditional) probability distribution P(zt Izl...zt-l) for the next z, E X.

Thus, before seeing z,, M is able to compute for any z E X a ratio-

nal fraction in [0,1], which we interpret as its prediction for the condi-

tional probability P(z, Ix1... zt-l). To say that M computes a probability

distribution means that the values of P over all z are normalized such

that ]_sexP(zlzl-..z,-s) = 1. After seeing the actual value of zt, M

updates its "state" to reflect the value z,, so that it ca_ then compute

P(z,+l [zl... z,). This process continues forever.

In addition to these functional requirements, we impose the follow-

ing efficiency requirements: the time for M to compute any prediction

P(z, Jzs ...zt-l) and the time for it to update its state to account for zt

are each bounded as a function of t. Intuitively, this means that M doesn't

"slow down" as time goes on; it is able to keep up with the incoming data

stream and remain an on-line predictor.

The formal definitions are as follows. Let X be a fixed (and in this

paper, finite) set of symbols, and let Q[0,1] be the set of rationals over the

interval [0,1].

Definition 4.1 A well-parameterized family of distributions is a finite set

A o/parameter values, with an a_soeiated algorithm PLarnbda that compute8

a probability distribution on X for each _ E A: Pzambda(z, _) E Q[O, 1],
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and E= P(z, $) = 1, for all A.=

Example 4.2 Suppose X - {0, I}. Let A be a finitesubset of Q[0, 1],and

for each A E A, let P(z, A) := ( ifz = 1 then A else 1 - A). This describes

a family of Bernoulli distributions(biased coin flips)where the probability

is A of coming up with a "1". By contrast, the family of all Bernoulli

distributions,for which A = Q[0, 1],isnot well parameterized because A is

infinite. A

Definition 4.3 Fi= a well-parameterized distribution family A. A model

M is an algorithm that receives as input an infinite stream =l,z=... E X**

and in turn outputs a stream hi,A=... E A** of parameters from A. M

outputs At after receiving zt-i but before receiving zt; we interpret P(., At)

as M's estimate for the conditional probability distribution P[. IZl,..., zt].

Furthermore, the time/or M to compute and output At must be bounded

(as a function of t).

set A{ of models over the same X and A is referred to as a model

class.The model class isto unsupervised learning what the concept class

isto supervised learning.

Example 4.4 Let A be a well-parameterized Bernoulli family, as in Ex-

ample 4.2. Fix A E A, and consider the model M that outputs A for every

t. This model corresponds to a view of the world in which the environment

is performing a sequence of independent coin flips, yielding l's and O's with

probability A and 1 - A, respectively. The class At of models of this type,

one for each parameter in A, represents a choice of world-views that agree

about the nature of the environment (independent coin-flipping) but dis-

agree about the probabilities. The "real" world may not be any of these,

but over a given period of time, one of these models is likely to be the best

of itsclassin accounting for the frequency of l's and O's. A

When a growth parameter n is given, we have a model family Atn, as-

sociated with Xn and An (n _> 1), provided: (i} The algorithm Pn (corre-

sponding to An) computes the probability Pn{z, A) in tlme bounded by a

2When X can be infinite, an additional requirement muir be imposed to insure that

the algorithm P4 runl in time polynomial in the length of =.
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polynomial in n; and (ii) each model _£ in _i, computes its output At in

time uniformly bounded by a polynomial in n. This means that our model

families must be able to scale upward at a reasonable rate to handle larger

size models and possibly a larger set of input symbols.

Example 4.5 (Bernoulli Models) For n >_ I, let An be the subset of

rationals A in Q[0, 1] whose length len(_), when written in binary, is at

most n bits. Let _(n be the class of Bernoulli models corresponding to An,

as in Example 4.4. Then X - {0, I), A,_, and _In together define a family of

Bernoulli models, with 2 _ possible models. The time for a model M' E _

to output its prediction is 0(n), since all it has to do is output up to n

bits. For the same reason, P,_ requires 0 (n) time to compute probability

estimates. A

Example 4.6 (Classification Models.) An assumption that is often use-

ful is that successive inputs are statistically independent, i.e.,

PC z, I=,... =,-1)= PCz,) • (1}

A model M that incorporates this assumption will predict the same distri-

bution (i.e., output the same parameter _) for all times t. Since X is fixed

in size, any (normalized) assignment of a rational in Q[0, I] to each input

z is a model, and any set of such models is a model class. (Example 4.5 is

a special case of this idea.)

But suppose the size of X,_ is growing exponentially with n D e.g., when

n is the number of attributes in an attribute vector. Then models cannot

assign probabilities individually to the elements of X, since this requires

outputting exponentially many bits. Instead, we need to group vectors

into clusters or classes, with the maximum number of such classes growing

only polynomially in n. Furthermore, computing the probability for an

individual vector in a given class must be fast. For example, an easy way

to do this is to assume that all vectors in a class have equal probabilities of

occurring next. Finally, we need to limit the size of (i.e., number of bits to

represent) the probabilities asociated with the classes, say, to a polynomial

inn.

The view of the world painted by these assumptions is that of an en-

vironment that randomly selects, independently for each time t, one of a
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small (i.e., polynomial-size) number of classes, chooses at random a vec-

tor from that class, and presents that vector. (Compare the finite mixture

model discussed above.) As with the coin-flip model, the actual environ-

ment may not be generated in this fashion, but the best model in the class

will probably capture some aspects of the environment, by classifying ad-

jacent vectors into a few (hopefully meaningful) classes.

Later we shall define and analyze a particular family of classification

models. A

Example 4.7 (Markov Chain Models.) One of the simplest ways to

relax the independence assumption for inputs is to use Markov-dependent

random variables. In this case, the total dependence of the t'th prediction

on the previous t - 1 inputs can be reduced to dependence on one of a finite

set S of values ("states"). Eq. (1) above can be revised as follows:

PCx, = Is,-l), (2)

where the state at-x E 5' captures all the dependency on zl,... ,zt-l.

For simplicity, let X = {0,1}. A Markov chain s over X consists of

a (finite) set 5' of states, one of which is designated the current state; a

deterministic transition function 6 mapping each state s and input value z

into a new state s'; and probabilities IV(l[ s) and IV(0 [s) for these transitions

summing to 1.

A Markov model M is a program based upon such a Ma.rkov chain. Be-

fore the t'th input bit arrives, it uses the input xt-x and current state st-x

to compute the next state st -/5(8,_x,zt-l), and to output the probabil-

ity IV(1 ]st). The pa.rameterized distribution family A is a Bernoulli family

(Example 4.4); if M outputs IV, this corresponds to a prediction of IVfor the

input I and 1 - IVfor the input 0. But unlike models that view the environ-

ment as a sequence of independent events, M may output different values of

lv at different times. Since we are interested in modeling environments that

are in equilibrium, we restrict our models to those whose Markov chains

are strongly connected - i.e., indecomposabh, with no transient states.

As a growth parameter n, we typically count the maximum number of

states; but we must also limit the length in bits of the transition probabil-

SMore precisely, a finite function of a homogeneous' discrete time, dhscrete state, unifilar

Markov process.
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ities. A bound of length n on probabilities for an n-state machine is quite

liberal since it allows exponentially small probabilities. Thus one family

J_ of Markov models corresponds to a fixed set X, the fa_nily a_ in Ex-

ample 4.4, and the class of Markov chains with at most n states and with

transition probabilities in A_.

It is also possible to allow the size of the input stream X to increase

in size with n. In this situation, if X_ grows exponentially with n, then to

preserve efficiency we must classify (i.e., group) the values of X as we did in

Example 4.6. Each state may correspond to a different classification model,

described by a parameter in b_ discussed in Example 4.6. (Compare the

hidden Markov models discussed above.) In this paper, however, we shall

consider X to be fixed.

A

To summarize the definitions given in this section, model classes axe

classes of stochastic processes, with special attention given to their compu-

tational efficiency. Adopting a model class limits the choice of models we

may consider for predicting the future, but in return ensures that we will

be able to make predictions online. Classification models arise naturally

from the assumption that inputs are independent, whereas Maxkov models

incorporate a simple form of dependence. Naturally, many other types of

models are possible as well.

4.2 Presentation

In this work we assume only that the input is a stream {z,, t > O} E X °°

of symbols from a finite set X. It is convenient to regard the symbols as

arriving one after another at a steady rate. In practice, this rate strongly

affects how large an n we can support for our model class _t, on a given

machine.

4.3 Learnability

Having selected a model class _, we then have a learning problem: to find

a model in _t that is "optimal _ (in some sense) for predicting the input

data stream.
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How do we decide which model is best? In general there may be no

"best" model, because the actual process producing the input may be to-

tally unrelated to the models of our model class. Or imagine, for example,

a particularly truculent environment that selects at random a model from

34, uses it to generate new data for a random number of steps, and then

selects another model. But When in fact the input reallF is the result of a

model M in the class, we should certainly expect, disregardlng the compu-

tational resources required, that some algorithm eventually could identify

M, or an equivalent, as the best model. This corresponds to the notion of

"learnable in the limit" from supervised concept learning (Section 3.1) 4.

Definition 4.8 Two models M and M' with outputs in A are said to be

equivalent if, for anlt input stream, the values of P(=, At) and P(z, A_) are

the same for all t and z - i.e., the probability distribution._ predicted bit

the two models are alwalts identical, even when their outputs At and A_ are

different.

Definition 4.9 A model cl_s Jr{ is learnable in the limit if there ezist8 a

procedure/_ with the following properties:

1. In respor_e to the stream of inputs {zt, t >_ 1} E Xo*, A outputs a

stream of models (Mr, t >_ 1} in 34_. It is often convenient, but not

necessary, to eor_ider Mt a8 the responne of A to the input =t-l.

IL Let M be any model in )4, and let the input stream be generated

according to the probabilitlt distribution determined blt M. Then with

probability one, all but finitely manzt of the models Nit output bl/ A

are equivalent to M.

For example, an algorithm modeling the input stream as a Markov

process would specify, following each input z, the states, transitions, and

transition probabilities for some Markov process in the class Jq. Assuming

the input stream is generated by a process in _i, this algorithm should

eventually output only Markov processes equivalent to the one responsible

for the input. If such an algorithm exists, then .kl is learnable in the limit.

4The ideas of thim and subsequent sections can be made somewhat more precise math-

ematically by viewing models .us defining probabilityjme_ure, on X °° and using meuure-
theoretic formalism to express the results. For simpficity we shall not do so.
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It is difficult to imagine a weaker condition than "learnable in the limit*

and still view a model class as learnable.

A model that is "way off" in describing the input will over time predict

very small probabilities for the inputs that actually occur. By contrast, a

better model finds that its predictions come true more often, in that the

probabilities for observed inputs are higher. The likelihood is a well-known

measure of the quality of predictions over the history of the process.

Definition 4.10 Let M be a model and X* =- zz...zt a sequence of t

inputs. Let _z,...,_, be the parameter outputs of M over this sequence.

The likelihood of X _ according to M is given by the product

L(Xt IM) ffiPCzl,

The likelihood function is useful in proving learnability in the limit. The

idea behind this type of proof is as follows. Let the input be generated by

M E _, and let M w be any model in J_. We show that with probability

one,

IM) >_L(X IM') C3)

for all but finitely many t. Furthermore, equality holds iff M and M'

are equivalent. Thus a learning algorithm that simply outputs the model

with the maximum likelihood for the input so far satisfies the learnabi]ity

requirement.

The following two results, for example, both from the statistics and

information-theory literature, are obtained from this type of proof. (We

have provided simple proofs in an appendix to this paper.)

Proposition 4.11 Let X be a finite set and _ a finite class of models

predicting statistically independent inputs over X. Then _4 is learnable in

the limit.

As an immediate corollary, classification models (with Bernoulli models

as a special case) are learnable in the limit.

Proposition 4.12 (see [4]) let X be a finite set and _ a finite class

of Markov chain models over alphabet X (see, for ezample, Ezample 4.7).

Then _ is learnable in the limit.
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An interesting question is for what processes Eq. (3) is also a neees-

aary condition for learnability. Also, in recent work [2] Angluin defines the

notion of a uniformly approzimately computabl_ sequence of distributions

over the integers. Roughly, the sequence D0, Dl,... is uniformly approx-

imately computable if some total recursive function exists to compute a

rational approximation of D_(z) to within _, for any i, z, and c. She goes

on to show that such a sequence is learnable in the limit. One wonders, for

example, whether the likelihood property holds for any such sequence.

Infinite convergence results are not especially useful by themselves, but

they frequently point the way toward finite algorithms: run the infinite

algorithm for a certain period of time, stop it, and see what you've got.

Later this idea will be used to obtain emcient leaxnability results.

4.4 Learning Minimum-size Models

In many situations finding a model is not enough: we want to find a 8mall

model equivalent to the source. For example, if we are learning classification

models, of the many models equivalent to the correct one, we are usually

interested in one with the fewest classes. Minimizing the number of classes

in the model makes no difference insofar as the predictions are concerned

- any model equivalent to the Source yields identical predictions at the

parameter level. But when we come to interpret the parametric model in

terms of higher-level concepts, then splitting classes into small pieces can

make it harder to understand their significance. For example, arbitrarily

splitting patients with Syndrome X into several classes makes it harder

to identify X as a meaningful diagnostic unit. Similarly, the number of

states in a Markov chain model conveys information about the temporal

behavior of the source; minimizing the number of states needed to describe

this behavior tells us quite a bit about the process generating the input.

Much has been written on the process of determining the number of

clusters or classes in a classification (e.g., [9, 24]). Within our model of

unsupervised learning, there is a direct resolution to this problem, using

some basic probabilistic techniques. In order to illustrate the idea, we define

two specific model classes and present algorithms that learn in the limit a

smallest model equivalent to the source model.
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A simple classification-model family. Let r be a positive integer, and

X be the set of ordered ,-tuples (vectors) z,,...,z,, with each element

(Uattribute") z_ taking integer values in the set (0,...,r- I). Thus the

cardinality of X is r". We are interested in models that partition X into

a collection of up to k disjoint subsets S,,..., Sh. We also require that

these subsets be orthogonal hyperboxes, defined by a constraint of the

form i _ z_ _ ] for each attribute (O _ i,j __ r). In two dimensions,

for example, the r x r square X is partitioned into rectangles, up to k in

number. Associated with each box S_ of the partition is a probability _,

interpreted as the probability that one of the vectors in set S_ will occur

next. If the vector x is in set S_, then its probability P (x) of occurring next

is understood to be 7r_/[S_]. Thus specifying a partition and a normalized

set of probabilities for each block has the effect of assigning a probability

to each vector in the space.

Initially we shall limit the lengths (in bits) of the set probabilities Ir_ to

k binary bits. s Naturally we require that the probabilities of the boxes sum

to 1. Furthermore the number of boxes in the partition will be bounded,

and for simplicity, we adopt the same constant k for this bound.

A classification model can be encoded in about kn log 2 • bits 6 by speci-

fying the constraints and probabilities of each of the sets of the partition.

A, denotes the set of all such valid specifications. A classification model ._fx

outputs the encoding A of a model before each input value zt is received.

)4, denotes the family of all such models, as a function of ,; we refer to this

family as k-RDC (bounded rectangular disjoint classifications). It is easy

to verify that A, is well-parameterized by constructing an 0 (n) algorithm

to compute the probabilities of a vector x from a model parameter A.

k-RDC is learnable in the limit, by Proposition 4.11. But can we identify

a model with the fewest classes? Several techniques have been suggested

for this purpose, such as assigning a higher cost to models with greater

complexity [24], but we adopt a different approach. The difficulty arises

from the random variations in the sampling. Suppose a set S _C X is

selected with probability _r. Let S, and $2 be disjoint subsets whose union

is S, each containing half the points in S; then their selection probabilities

SThis condition _s imposed for the benefit of later complexity results; it is not required
for the results of this section. _

eThe ddau]t logarithmic base in this paper is e.
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are _rx = _r2 = _r/2, and the probability of any vector x in these sets is

p(x) = _/[S[. But because of statistical fluctuations, this uniformity rarely

occurs, and at any time t we arc _ikely to have drawn more vectors from $I

than from $2, or vice versa. As a result, there is usually a model in which $I

and $2 occur as distinct sets that has a higher likelihood than any model in

which S occurs as a unit. Thus the law of large numbers does not prevent

maximum-likelihood methods from a bias in favor of more fractionated

models.

Our solution to this is to bound the uncertainty with which the param-

eters of a given model can be estimated. If the vector probabilities p(x)

in the subblocks are equal to those of the block they refine to within this

uncertainty, we are justified in using the large block instead of the several

components, even though doing so may lower the likellhood of the model.

Specifically, let {$I,..., Sp) be a partition of X. Given a sample X I

of t vectors, let us count the fraction of those vectors belonging to $I,

and set @l to this fraction; @2,..-,z'p are computed similarly. Now we

have a model based on the partition (S_) and the parameters {#_); and

it is not hard to show that of all models for this partition, this one has

the maximum likellhoodfor X _. Repeating this procedure for allpossible

k-RDC partitions,we obtain a set of optimal models of X _, one for each

(admissible) partition of X. Among these willbe the maximum-llkellhood

model(s) for the sample.

In the following algorithm, @(t) is any function defined for t > 0 such

that @(t) --,0 and _(t) > _/loglogt/2t.

Algorithm 4.13 For each t > 0:

I. For allpartitionsIll,If2,...of X, findthe optimal models Ml, A_f2,...

of X _ as discussed above.

2. Of these, a non-empty subset M_, M_,... will have maximum-likelihood

for X _. For each of these M_, we derive a model, minsize(M_), as fol-

lows:

(a) Let REF_ be the set of partitions for which II_ is a refinement.

(II_ is the partition that goes with M_.)
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(b) A partition H E REF_ is unacceptable if the following condition

holds: for some block R of IT and some block S of II_ with S _CR,

IRI N ->,it) + N " (4)

Here, _n in the fraction of vectors in _ belonging to R, and

similarly for A0. Remove all un_ceptable partitions from REF_.

(c) Of the remaining partitions in REF_, select one with the fewest

blocks, minsize(M_) is defined to be the optimal model for this

partition.

3. Among all the optimal models minsize(M_), output one with the

fewest blocks.

To see why this procedure works, first observe that, for all but finitely

many t, with probability one, each of the maximum-likelihood models M,:

will be correct (equivalent to the source), by Proposition 4.11. Thus all we

need show is that the algorithm finds a minimal model equivalent to these

for almost all t.

Assume then that M_ is a valid model based on the partition II_.. Let H

be a partition refined by r_, and ._r its optimal model. We first argue that,

if M is not valid, it will almost always be found unacceptable !n step 2(b).

M is not valid iff there are two blocks $1 and S_ in II_ in which there are

vectors with different probabilities, and some block R in M that contains

both $1 and $2 (see Fig. 1). By the Strong Law of Large Numbers, the

estimates ?rs/IR I and ?ts_/IS_l converge almost surely to their true values

_R/IRI and _,ilS, I. Let

= IIS,I IS,l I;

byhypoth_is,,> 0. The__/IRI differsfromeither_,IIS_I o, _,IIS, I
(say, $1) by at lea_t c/4 for almost all t. But since ¢(t) ---, O, the set S1

will almost always fulfill the condition in Eq. 4, again with probability one,

whereupon M will be deemed unacceptable.

Having argued that the algorithm will not continue to combine inequiv-

alent sets, we must convince ourselves that it u_ll eventually combine sets

that are equivalent. The argument will then be complete.
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S I
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R

Figure 1: The sets Sl, $2, and R.

As above, consider a block R in Mi combining blocks S# (j = 1,2,...)

in .84othat all have the same vector probabilities. Let Irjzbe the total

probability for the vectors in R and _r#for those in $#. By the Law of the

Iterated Algorithm [12],for a sample of t vectors,the estimate _Jz of Irjzis

almost always within @(t): I_s - lrRi < @(t) a.e. Thus

Likewise, for the estimates @i of Sj we have

Isil [s_l I-_l' a.e.

But since_IIRI= ,_,IIS,I,

I_ _ I _(t) _(t)IRI iS_l < _ + i-R-_'a.e.

Hence, by Eq. 4, R is an acceptable agglomeration of the collection S t.

This concludes the proof of

Theorem 4.14 With probability one, Algorithm 4.15 outputs a k-RDC

model o� minimum size equivalent to the k-RDC _ouree process/or all but

finitely manl/ t.
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Mlnimum-size Markov models. Finding a Markov model of minimum

sizeequivalent to the (Markov) source turns out to be rather easy,owing to

the property that every model in our Markov family has a unique smallest

equivalent7 (see [25]for a proof). The family of model classesin which we

are interestedisthat described in Example 4.7,except that X can be any

finiteset of symbols.

We show that, with no bound on computational resouces, there is an

algorithm that identifiesthe target model exactly,and moreover determines

the model with the fewest states equivalent to the target.

The above procedure for finding optimal models for a given partition

has a direct analogy for Markov models. Let a skeleton be a Markov chain

without the transition probabilities specified. Given a string X t over X

of length t, we follow the unique sequence of t transitions, and for each

state s and each symbol a E X count the number of times the a-transition

out of that state occurs. Let t, be the number of times any transition out

of s occurs, and t,(a) the number of a transitions. Then _,(a) = to(a)/ta

is a consistent estimator of the transition probability p°(a), and it is not

hard to show that these parameters yield the model with the maximum

likelihood for X _ of all models over the same skeleton. Repeating this

procedure for all possible skeletons, we obtain a set of optimal model8 of X _,

one for each skeleton of X. Among these will be the maximum-likelihood

models. Naturally, we can discard any resulting models which violate the

requirements of the Markov class, such as having transient or unrear.hable

states.

The procedure for finding the minimum equivalent model is as follows.

For each t > O, with X _ being the input string so far,

1. Determine for each skeleton .M the parameters of the optimal model.

Discard allsuch models violating the requirements of the class.

2. Let M' be an optimal model with the maximum likelihood for X _.

Round off" all its transition probabilities to n bits, and compute the

unique model M_ equivalent to M r with a minimum number of states.

3. Output M_.

VThk iJ not true for Markov modek that are not unifil_r.
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We argue that this simple procedure outputs the minimum-state equiv-

alent to the target model for all but finitely many t (with probability one).

By Proposition 4.12, eventually the model M wwill (with probability one)

be equivalent to the source, since it is a maximum-llkelihood model. Since

there are no transient states in M _, with increasing sample size t, every

edge will be traversed an arbitrarily large number of times (with proba-

bility one) - i.e.,to(a)grows without bound. Thus _,(a) converges almost

surely to p,(a). And because the probabilitiesare bounded below by 2-",

the rounded estimates eventually are exactly equal to p,(a) (with probabil-

ityone). Thus the model M rwillbe correct allbut finitelyoften. And since

it has a unique minimization M_, that too will be correct allbut finitely

often. This proves:

Theorem 4.15 There is an algorithm that, with probability one, outputs a

Markov model of minimum size equivalent to the Markov source process/or

all but finitely many t.

4.5 Efficient Learnability

Learnability in the limit does not necessarily imply uniform convergence

over time - i.e., gradually improving the quality of the model. But, as

noted earlier, it is often the case that an in-the-limit algorithm can be

truncated and turned into a probabilistic approximation algorithm that

runs in finite time. We note that (as with supervised learning) a finite

algorithm can usually be expected only to approximate the input source.

How do we measure the closeness of such an approximation?

Definition 4.16 Let 34 be a moc_e! dass. A distance measure d is a non-

negative real [function on pairs of models 34 x 34 such that: (i) [for equivalent

models, M and M' E 34, d(M' IM) = o; (ii) [for inequivalent models,

d(M'IM) >0.

Example 4.17 Let M be the target model, and M' any other model. A

strong distance measure is the maximum possible difference in the predicted

probabilities of the two models:

dl(M' [ M) = max[P(zt, A't) - P(z. At)l.
gl
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Another popular distance function is variously known as the cross en-

tropy, informational divergence, or Kul|back-Leibier function [18, 21, 29]:

1 L(X'IM )d,(M'1M)=/iLm i-log
assuming the limit exists. For ergodic processes with the likelihood property

(Eq. 3), including the the classification and Markov chain models, this is a

well-defined distance measure. The fact that this function is not symmetric

makes it somewhat more difficult to work with.

Finally, the mean-squared error, generally used only for time-independent

processes, is defined by

' [p(:_, I_,') - P(_:, I,_)]'
ds(M'lM) - lim

t--.oo t '

again assuming the limit exists. For independent processes, this limit is the

expected value of the squared difference in predicted probabilities. A

Given such a distance measure d, we divide the efficiency question into

two parts. Let 14, be a (learnable) model family, with n as the growth

parameter.

Definition 4.18 14, i8 said to be data efficient (with respect to the distance

measure d) if there ezists a polynomial f and an algorithm tl, taldng as

parameters n, e, and 6, uffth the following propcrtp: for an input stream

generated bp anp M E 14, tl ezamines t < f(n, 1/e, 1/6) inputs zx...zt

and outputs a model M t E ),(,i such that d(M'IM ) < e, with probabilitlt

>1-6.

Below, we give examples of model families that are and are not data

efficient, with respect to different distance measures.

As with supervised learnability, there are families that we know are

data efficient but for which we do not yet have algorithms to find good

models from the input data. The ability to find good models quickly from a

sufficient sample of the environment is captured by the following definition.

Definition 4.10 14, is said to be efficiently learnable if it is data efficient,

and the learning algorithm 11 runs in time bounded bv a polvnomial in the

total size of the input data.
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Below we analyze the efficiencyof learning the three sample model fam-

iliesdefined above, the Bernoulli,k-RDC, and Markov families.

4.5.1 Bernoulli Models

The Bernoulli family of models was defined in Example 4.5. There are

2" possible models in this fatal!y; the fact that we can efficiently find an

_-approximate model is, of course, a direct consequence of the exponential

convergence of sums of independent random variables to their meart.

Assume the environment is a sequence of l's and O's generated by a

Bernoulli process whose parameter is A. E A,. Let dl be our distance

measure. Given _ and 6, we want to choose A E A, such that IA - A. I _< e,

with probability > 1 - 6.

Define _' to be 2-"/3 if e < 2 -n, or [e. 2"J • 2 -'_ otherwise. We argue

that at most

inputs axe required to obtain an c-appr_imate parameter A. (Note that

the sample size t isclearlypolynomial in n, I#, and log 1/6.) Given this

many inputs, lettl be the number of l's in the string X _. Our algorithm

isto determine the proportion tx/tof l's and to round thisestimate to the

nearest multiple of 2-"; thisvalue isoutput as our hypothesis A.

To see that t issufficientlylarge,consider firstthe case where _ _ 2-".

Thus _'_ c,and by Hoefl'ding'sInequality [17],in t trials,

< 5.

Thus with sufficiently high probability, the (rational) estimate tz/t is within

t_ of A.. Consider now the effect of rounding, t_ is e reduced to the next

lower multiple of 2 -". If A. = i2 -" and d -- j2 -" for some integers i and i,

then since with high probability tl/t is within _' of A.,

(i - j)2 -n _ tz/t <_ (i + j)2 -n.

Rounding tilt gives A, for which we have

(i- j)2-" < A< (i + i)2
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and so J_ - _.J __ _ __ _.
In the other case, when e < 2 -n, d is fixed at 12 -n. Hoeffding's In-

equality still guarantees that tl/t will be within d with high probability,

and rounding will therefore result in _ - _,.. We have thus proved:

Theorem 4.20 The family of Bernoulli model8 is data-e_cient, _th re-

spect to the dl distance. Furthermore, when c < 2 -_, the model is learnable

ezactly from polynomially many input data, with high probabilitv (> 1 -6).

As a corollary, we note that the above algorithm for processing the t

data values runs in time polynomial in t. Hence

Corollary 4.21 The family of Bernoulli models i8 efficientltt learnable (with

respect to dl).

Suppose next that our model class does not correspond to reality, that

the actual probability A. is not a multiple of 2 -n. Then the algorithm

above will still produce a parameter ,_ E An, but as it happens, ,_ mall not

be within c of ,_. because rounding could push it off in the wrong d|rection.

A simple change to the calculationof e' will fix this small problem, but this

illustrates that, even if an algorithm correctly finds an e-approximation to

any model within the hypothesized model class _in, that same algorithm

mall not produce an _-approzimation when the data is not a result of anll

model in the cla_s, and may not even find the model in the ela_s that most

closelll describes the data.

Suppose we prefer a diferent distance measure? Obviously, the above

results hold for the d3 distance measure. In the appendix we show that

Bernoulli models axe still data efficient and efficiently learnable when the

d: distance measure is used. Our upper bound on the size t of the data

sample differs from that given above for dt by a small factor.

4.5.2 /c-RDC Models

The k-RDC family was de_ned in Section 4.4. The key feature of this

class is that the maximum number k of boxes is bounded, regardless of the

number of attributes. While this may seem unreasonable, it is actually a

useful strategy: humans make most effective use of a classification if the
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number of classes is kept reasonably small. We shall discover that, by

bounding the number of classes, our task becomes one of identifying those

attributes that are most useful for classification.

Suppose a stream of vectors is being generated by a k-RDC model, and

consider how we might go about identifying the source model. Proposition

4.11 and identification-in-the-limit give us a generous hint: eventually a

correct model will have a higher likelihood than any incorrect one. The

question is, how large a sample is needed before all "bad" models - i.e.,

ones that are not c-approximations to the source - have significantly lower

likelihood, with high probability?

Let M. be the source k-RDC model, and let Ml be a k-RDC model

based on the partition £ = {R_} and assigning a probability of _r_ to the

block R_. Assume we have a sample X t of t vectors, randomly generated

according to the statistics determined by M.. Our first result is that we

can estimate for each block (box) P_ the total probability for the vectors

in that box.

Lemma 4.22 Fiz anlt 6 > O. Let R be any box in a k-RDC partition. The

probability _R that the nezt input vector belongs to R can be determined

ezactly, with probability at least 1 - 6, [rom a sample o[ t vectors where t

is bounded by a pollmornial in n and log(X/6).

PROOF: Our proof will appeal to the previous result for the Bernoulli

family. As usual, let M. be the source model and Mt any other k-RDC

model. First we argue that any box in a k-RDC partition contains a large

number of vectors. Imagine how we might partition the entire vector space

of r" vectors into at most k rectangular boxes. In specifying a block of that

partition, we select a non-trivial constraint on, say, the first dimension:

xl <__bt, where bt <: r - 1. As a consequence of this constraint, the resulting

partition must contain at least two blo_' A further constraint, whether of

the form xt >_ at > 0 or a constraint on a different attribute, will mean that

the resulting partition must contain at least three blocks, as a consequence

of the orthogonal geometry. In fact, each constraint bounding an attribute

away from an extreme value (0 or r - 1) forces the resulting partition to

have another block. Since the number of boxes is bounded by k, there can

be at most k - 1 constraints on any box; hence at least n- k + 1 attributes of
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any box have no constraint whatsoever, and allow the attribute to assume

all possible values between 0 and • - 1. It follows that each box contains

at least r,-k+l vectors.

Next, suppose for the moment that R is a block of the target model

Air.. How would we estimate the probability _rR? _rR is a multiple of 2 -k.

Hence estimating _rs is equivalent to learning a Bernoulli model, and since

2 -_ is constant, _rs can be learned exactly, with high probability, from a

small sample, by Theorem 4.20.

Now let R be a block in the partition of an arbitrary model MI; we

argue that the problem of estimating the probability _rR is again a matter

of learning a Bernoulli parameter, and that we can do so exactly with high

probability. Denote by by X_ the subset R n S_ of R contained in the y'th

block S_ of M.. We've already seen that R is big, but Xj must also be

big. To see this, note that R is partitioned into at most k rectangles by the

various blocks X_. Each Xj is defined by at most 2k - 2 constraints (k - 1

for R and k - 1 for S_); hence there are at least n - 2k + 2 unconstrained

dimensions. Now, either Ira is zero, or for some j, Xj contains vectors

occuring with non-zero probability. In the latter case, we can lower-bound

_rs as follows•

Suppose z'si""c_- 2-_, where c_ > O• ISjlcan be expressed as

Vl • • • Vh-I "r n-t+l,

where the v_'s are integers in the range [1, r] representing the number of pos-

sible distinct values the i'th constrained dimension can assume. Similarly,

IXjl can be written

_1 " t t , rn-2k-2•, Vk_ll_ 1 •.. t__1

where the |/_'s are the multiplicities for the dimensions that correspond to

the v_'s and the ;_'s are those for the additional dimensions constrained by

R. The probability xxs of obtaining a vector in X is then given by

Irx i
= - lx J

Is j

= c;2-'.
v1 • • • vk-I • r k-t

-- cj2 -k .A.

rn-2k-2

rn-2k-2
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(We have introduced the symbol A to stand for the complicated fraction

with /_'sand u's). Now, A is a multiple of 1/(r!)2k-2, and thus Irxiis a

multiple of _ - 2-t(1/(r!)2t-I) = constant. Since _rR - _j _rxi,ittoo isa

multiple of 8. Hence learning the parameter _rR is a matter of learning a

Bernoulli parameter, which we can do using a sample of size 0 (logI/6). 17

Considering allpossible partitions,how many parameters must we es-

timate? If,over allpartitionsthere are N distinctblocks, and for each the

probability x islearned exactly with probability 1 - 5/N, then the proba-

bilitythat any one parameter is learned incorrectlyislessthan 6. By Eq.

5, with d --/_/3, our sample need be no larger than

l'log(  v/6)]t= I "

(Since we can estimate exactly, the confidence e does not affect the sample

size.)

We can bound N as a function of the number ofattributes n. Since each

box in a model isdefined by at most k - 1 constraints,and each constraint

can be chosen in at most 2nr ways, the number of distinctboxes N is at

most (2nr) k. Hence:

Lemma 4.23 For any 6 > O, a sample of O(log(n/6)) vectors suffices

to determine ezaetll/ the mazimum-likelihood parameters (the 7rR 's} of all

k-RDC partitions, with probability > 1 - 6.

We can now prove the main result.

Theorem 4.24 The family k-RDC is data-efficient with respect to any

distance measure.

PROOF: The preceding lemrnas show that we can determine the actual

probabilities _rR for all the blocks of all possible partitions using a data-

efficient sample of vectors. We now show how to use these values to deter-

mine a model equivalent to the target M..

Let R be a block in some partition. From the proof of Lemma 4.22 we

know that all parameters 7rR axe multiples of some constant/_ depending on

k. Thus _rR//_ is an integer for each R. For each model Ml (consisting of a
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partition and the maximum-likelihood probabilities assigned to its blocks),

define the pseudo-likelihood function £(Mx) as follows:

[_. ] ra/$

Note that £ is a polynomial-size rational number. We claim that the

pseudo-likelihood function is maximized precisely on those models equiva-

lent to M.: i.e., £(m.) > £(Mx), with strict inequality whenever M, _ M_.

From this, we conclude the proof by computing £ for each model and choos-

ing one with the largest such value. Failure can occur only with probability

3, should our parameter estimates be wrong. Since it is a property of every

distance measure that the distance d between equivalent models is zero,

the result holds for arbitrary distance functions.

Refer back to the proof of Lemma 4.22 for the notation R, S_, artd X;.

Taking logs, we have

log £(M1) = _-_ _ _RlogC_R/IRI)

los£(M.) = _-' _ _, logC_,/ISl)
$

We take one term from log £(M1) corresponding to a particular box R artd

expand this as a sum over the subboxes X_ = R n S_.

log£(Mx)s -- _=x _ _x_logC_R/IRI).
xt

The portion of log £CM.) due to these same sets X_ is

log£(M.h = 0-1 _ _x, losC_x;/IX_l),
x;

since Irx_/IXjl = _rss/IS;I (just a sca]e change). Subtracting,

Iog (M.).-log (MO = O-'
x, \_lXil/

= _-'(_ - (_/R) E IX;I)
Xi "

O.
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And the inequality above isstrictly> unless all_rx#/]X#lare equal -- i.e.,

allvectors in R have the sa__e probability.

Summing over allthe boxes R, we have log£(M.) >_ log £(MI), with

strictinequality unless the two models are equivalent. The claim follows

directly by monotonicity of the log function, f-l.

As a corollary,we observe that k-RDC is e_ciently learnable provided

that we can generate and testallN partitionsinpolynomial (inn) time. (cf.

[31]).(We can; detailsomitted). Furthermore, a small sample issumcient

to learn a model with the small_t number of classes,just by choosing the

smallest model maximizing £.

Also, there axe several ways to relax the conditions on the model class

without sacrificingdata ei_ciency. Most notably, the hard bound k can be

replaced by a slowly growing function (i.e.,0 (logn)) of n, thus allowing

both the number of classes to grow (slowly) and the minimum non-zero

probability _rto get smaller. But while the k-RDC model family is _ei_-

ciently_ learnable in theory, no generate-and-test algorithm can be consid-

ered practical.More seriously,by requiring that allclassesin the partition

be rectangular - even those contain_g vectors with zero probability - a

large number of such classesmust be devoted to "boxing in_ vectors which

never occur. This situation can be avoided by allowing one set in the par-

titionto be arbitrary (non-rectangular), and requiring that itbe the only

one with probability _r - 0. virtually the same argument goes through,

provided the conditions imply that allrectangular boxes have probabilities

7rthat are integralmultiples of some constant ]_.

When thiscondition does nothold, an analysis of a very differentkind

is needed. Our argument above is very simple because the _r'scan be

learned exactly. When these probabilitiescan only be closely estimated,

the likelihood for any hypothesis can likewise be approximated; but deter-

mining how closely d is approximated when the component probabilities

are known to within a given accuracy requires quite a bit of detailed anal-

ysis of the functions involved. None of this requires any new mathematics,

but the analysis istedious and gives littleinsight.Furthermore, unlike the

preceding result,the analysis depends on the distance function d.
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if: " ° " " a:

d: I

Figure 2: Hard-to-dlstinguish models.

4.5.3 Markov Models

Our Markov family is described in Example 4.7, with the exception that

the set X of input symbols can be any finiteset. As in that example, we

axe interested only in strongly connected chains. We do not assume they

axe ergodic, since periodic behavior isoften important to model.

Finite automata axe notoriously difficultto learn in the supervised case

[13,1],so itis not surprising to discover that they axe also hard to learn

in the unsupervised case. We give a simple proof here for the ds distance

me,sure.

Theorem 4.25 The family Aim of Maxkov models (_ defined above) with

at most n states and transitionprobabilitiesbounded in length by n bits is

not data efficient(and hence not efficientlyleaxnable) with respect to ds.

PROOF: We exhibit two models which a polynomial-slze sample cannot

distinguish with arbitrarilyhigh probability,even though the two models

each have more than E error relativeto one another.

Assume an alphabet A = (a,b,c,d}. Machines Ms and M_ are shown

in Figure 2. Until a 5 transitionoccurs, the predictions for the two models

MI and M_ are identical.The probability that no b-transitionoccurs in t

transitionsis (1 - 2-")t,and we require t such that this probability isless

than 8. Taking logs,we find:

t. Iog2(I- 2-_) < log26.

But ift is bounded by a polynomial in n, this condition failsfor allsuffi-

ciently large n.
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a: l-2"n b: 2"n a: l-2"n b: 2"n

c:_ 1 -2 d: 1 -2 -n

Figure 3: More hard-to-distinguish models.

If no b transition occurs, any algorithm must choose between models Ml

and M2 on the basis of a string of a's alone. If it chooses Ml but the actual

target is M2, the error is 1 (the difference in probability for the c transition

out of the rightmost state). If it chooses M: but the actual target is MI,

the error is again 1 based on the d transition.

The algorithm could still succeed if it proposed some further model Ms

different from either MI or M2, such that d(Ms IM'l) < _ and d(Ms IMp) <

¢. But we can show that there is no such model. Immediately after the

first b transition, suppose Ms is in a state that predicts a c with probability

Pc < 1 and a d with probability p_ < 1. Necessarily Pc + p4 < 1, and so

if p_ > | then p_ < _. Thus either d(M3 [MI) or d(M3 [M2) is at least 1

Hence if _ < _, no model is within ¢ of both MI and M2. {2

The two models in Figure 2 are not sufficient to show that 3_ is not

efficiently learnable with respect to the d2 measure, because the _distance _

between Ml and M2 results from the two states on the right which axe

occupied only about once every 2-'* moves. Instead we use the two models

in Figure 3, where in each model the two states are each occupied half the

time on average. Otherwise, the proof follows a similar line of reasoning as

above.

The preceding theorem is based solely on the property that transition

probabilities can be exponentially small, thereby making it hard to ex-

plore important states of the machine in polynomial time. Unfortunately,

merely bounding the transition probabilities to be at least 1/poly(n) is not

sufficient to make Matkov models efficiently learnable. In Figure 4 we ex-

hibit two models in which all transition probabilities are either 0, 1, or 1.
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Even so, exponential expected time is required to reach a state in which

the two models make different predictions s. Only a bound of 0 (log n) on

the number of states will remove this problem. And even this may not be

enough: the large-numbers limit theorems for Markov chains also depend

on the structure of the underlying digraph of the automaton. In order for

estimates of the parameters to be reliable, we must be able to reach every

state of the process from every other state within a feasibly small expected

time. And for general digraphs, this is evidently not known to be possible.

All this suggests that, without significant restrictions on the size and nature

of the models, a Markov model family will not be ei_ciently learnable.

5 Conclusions

We have cast the problem of unsupervised learning into a statistical format

that differs from that of conventional pattern recognition in its emphasis

on efficient prediction and its concern for rapid convergence (_learning').

Starting from definitions of models and families of models classes, we con-

sidered four successively stronger concepts of learnability:

1. learnabiEty in the Emit: disregarding computational cost, a correct

model can be identified in finite time.

2. uniform learnabiEtlt in the limit: the same, with a Cauchy conver-

gence criterion that with more data our hypothesized best model gets

better according to some fixed distance measure.

3. data-e_eient learnabilit_ uniformly learnable from a feasibly small

amount of data, without consideration of the computational resources

required to extract the information from that data.

4. e_ff_cient learnabflitl_, uniformly learnable with a feasibly small data

sample that can be processed using feasibly small computing re-

SOurCes, -..................

SThanb to Don Kimber _nd Nick Littlestone for this example.
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a:_ o °° -_ states)

a:

• d_! • _ (n states)

Figure 4: Still more hard-to-distinguish models.



5 CONCLUSIONS 36

To illustrate these concepts, we have developed and analyzed three

model families: Bernoulli families, k-RDC classification families, and a par-

ticular Markov family. Much work remains to be done constructing mean-

ingful, expressive, and useful model families, algorithms to learn them, and

techniques for analyzing their complexity. Practical learning algorithms

need to be "on-line" [16] in the sense that they successively refinetheir

hypotheses as more data arrives,instead of collectinga large clump of data

and emitting a single hypothetical model. If the storage resources of the

model are bounded, then the predictions of the model may be subject to

random-walk behavior as runs of typical and atypical data are received.

Related problems concern the performance of such an algorithm when the

source of the data isnot a model in the target class,and when the best

model may change ("drift')with time [27]. And current interest in dis-

tributed learning procedures (e.g.,[26])point to the value of considering

parallellearning.

While this work was inspired by, and is closely related to, the learn-

abilitywork based on the Valiant model, itis worth a careful look at the

differencesin the two models. To that end, let us define a 8upervi#ed-

modeling problem as follows. Suppose 5 is a set of classification function8

defined on a finite vector space X. The purpose of these functions is to

associate each vector x with one of a finite set of pre-determined classes

Cl,... ,C_. However, these functions, rather than assigning a unique class

to a vector, output a probability distribution: f(x) is a set of k rational

values pl(x),...,pt(x) summing to one, with the intended interpretation

that x belongs to class C'_ with probability p_(x). The learning problem is

to identify an arbitrary function f. E Y', given a stream of input examples

that have been classified by a teacher. The teacher provides examples of

fo E Y" by choosing a vector x (not necessarily independently) from X ac-

cording to some unknown sampling scheme, assigning a classification C_ to

z according to the probability distribution f.(x), and presenting the pair

(x, C_) to the learning algorithm.

In the special case where the vector space is {0, 1} ", and there are

exactly two classes, sad all the probabilities are either zero or one, and the

sampling scheme consists of independent trials, we then have the problem of

leaxning Boolean classifiers. The Valiant model is obtained by introducing

a distance measure d(fl If2) and requiring that the distance between the
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target and the hypothesized functions be less than c with high probability

(1 - 6). The distance (or "error") between f and f. is the measure of the

set .f/k f. of vectors on which f and f, output different classifications,

using the probability distribution over X. Let E denote the mathematical

expectation of a function with respect to the distribution P on X. Then

since values of f and f. are 0 or 1,

d(flf.) = Elf(x) - f.(x)]'

= ds(flf.),

the mean-squared error defined above (Example 4.17). So the Valiant model

is a highly specialized case of model learning over a vector space X x

{0, 1}, in which the models need not account for the distribution of the

X part of the input data, but only for their classification, with the mean-

squared error ds as the measure of distance between hypotheses. From this

perspective, many interesting generalizations of the model - including that

of non-independent examples - become possible.
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Appendix

A Proofs of Propositions of Section 4.3

These two propositions follow from more general results available in the

statistical literature, but a simple, direct proof is useful when develop-

ing and analyzing learning algorithms. For convenience, let us restate the

propositions before proving them.

PROPOSITION 4.1 1: Let X be a finite set and _ a finite clo.ss o/ models

predicting independent inputs over X. Then _ is learnable.

PROOF: Suppose M' is any such model, and M. is the model defining the

population of X. For any z E X let Pffi be the probability of = according

to M., and p_= that according to M w. Suppose we have a large sample of

t selections from the population. The particular point z occurs t= times

in the sample; and by the law of large numbers, we know that t=/t -. p=

almost surely as t --* oo.

The likelihood of the swmple according to the model M. is given by

L(Xtl M.) = rIP.".
zEX

Taking logs, negating, and averaging over t, we obtain the sample entropy

for Mo:
tl

_(x _IM.) = _ ? logC1/p_).
zEX

Similarly, the sample entropy for M' is given by

t•
ttCX'IM' ) - _ ylogCl/p'.).

=EX

We argue that HCX _ [M') > H(X t[M.) for almost all t, with equality iff

M' and M. axe equivalent. It then follows that LCXtlM _) < L(X_IM.)

for almost all t whenever M' is not a correct model, and this enables us to

identify the correct model all but finitely often.

To prove the claim, note that

H(X _ IM w) - tlCXtlM.) = _-_Ct•/t)log(pffi/p_)

-_ _ p. log(p./p°.)_, t -_ go
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in the sense that t,ltremains within eof p, for any _ > 0. But logCP,l_/,)_>

1 - (p_/p,), with equality iff p, = p_. Thus

>_ _PzCl-(p_/p,.)

=1-1

= O.

[]

PROPOSITION 4.12 Let X be a finiteset and 34 a finite class of Markov

chain models. Then 34 is learnable in the limit.

PROOF: Our notation is as follows. A Markov model over the alphabet X

has four components:

* a finite set $ of states (sl,..., _,).

, a designated state s0 E S, calledthe start state.

• a function 6 :S x X _ S indicating the next state 6(s,a) when the

character a isreceived in the current state #.

• for each state _ and each character a E X, a probability p°(a) such

that E,ex p,(a) = 1.

Let X' be a string of length t over the alphabet X. The likelihood

L(X _ [ M) of Art for a model M is given by the probability P(X' [M). If

M is a skeleton (i.e., a chain to which the transition probabilities have

not yet been assigned), we obtain the maximum-llkellhood parameters as

follows. Starting in its initial state, run M through the unique sequence

of t transitions determined by X t, and for each state 8, count the total

number t(8) of transitions out of that state, as well as the number to(S) of

transitions from that state on behalf of each character a in the alphabet.

States out of which no transitions have occurred may be assigned arbitrary

transition probabilities.The ratio to(s)/t(_)is a consistent estimator for

the probability po(a). The likelihoodof X _ ISgiven by

L(X'IM)= lq Lt- j •
°e8
aeA
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The sample entropy of M for X t isthus

t.(,)
t,(,)log .

hCX' IM) = t(,)
'16

We assume that the environment is generated by some Maxkov chain in

the family, and that X t is a string of length t generated by that environment.

Let M. be a Markov chain equivalent to that generating the environment

(ambiguously, Air. represents the skeleton for such a chain). S denotes the

set of states of M.. For 8 E S and a E X, the notation t,(8 ) and t(8) is as

defined in the above discussion, pertaining to the skeleton M,. p, Ca lM,)

denotes the actual transition probability out of _ on behalf of the character

a for the model M.. Let Ml be the skeleton of another chain in the family,

with R as itsstate set. For r E R, t.(r) and t(r)axe similarly defined. For

purposes of this proof, we should imagine the skeletons Air.and Mx both

being driven in parallelby thestrlng X _.

The idea is to consider the sample entropy of Mx, in this case for a

particular state r, and decompose the entropy of Air.according to the state

of Mz.

Fix a state r E R. H,(XtJMz) denotes that part of the sample entropy

contributed while MI is making transitions out of state r. (The total sample

entropy is the sum over all r in R.) When Ml is in state r, Air. may be in

several states in S. The sample entropy for M. is likewise the sum of the

parts _r,(X' [M.) contributed while M1 is in r. We shall prove a stronger

result than stated in the theorem: that H,(X t IM.) <_ _/,(X t [M1) for each

state r E R, with equality iff all states 8 occupied by M, while MI is

state r have the same set of transition probabilities. By summing over • and

converting from entropy back to likelihood, the theorem obtains directly.

First, we compute the respective sample entropies for Ml and M.:

1 t(r)

IMd = ; _-'_t,(r)lOgo to(r----) (6)

1 t(,),
,q,(,P IM.) = _ ,es_ _t,(r,,)log° _ (7)

where t°(r, a) counts the number of a-transLtions that occur when both MI

is in state • and M. is in state 8.
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The rest of the proof is just manipulation of these expressions, and

passing to the limit. In (7) we write

t.(,-,_) t(r) t(,',s) t.(,',_)
t t tCr) tC,',,,)

t,(r,._)

- C..D.,,. t(r,a)'

introducing C, and D,., for notational convenience. Thus

t.(r,,)
f'I'(X_IM')=C'_D"'_., t(r,s)

As for (6), we cart similarly write

t.(,.) t(,.) t.(,.)
t t t(r)

Thus

t.(,.o)
- o,.z.

t(,.,°)t.(,., °)

t.(r,s)
- c,._ D,., .

t(r,s)

--log _. (s)

t,(r,°) tCr)

I'I'(X_]MI)=C'_D_"_. t(r,a) l°gt,(r)" (9)

Note that in the limit, both t,(a)/t(°) and t.Cr,°)/t(r,°) converge to

po(alM. ) (almost-surely). By contrast t,(r)/t(r), _ it approaches any limit,

appro_eaa value that is a linear combination of the probabilities p. (°[M.)

over the staten ° occupied at various times by M. while MI is in state r.

Thus, in the limit, from (8) and (9) we have

_,(X'IM,)- f-Z,(X'IM.) -- C, _ D,.oEp.(alM.) log p'(X' lM')t(r)
, . t.(,)

> C._/D.,o_p,(a[M.)[1- p,(X, iM.)t(rOlf)t'(r).1

= O.

And in (10) equality holds only if states r and o ea'_e equivalent. 13
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B Bernoull| models and Distance d2

We show that Bernoulll models are data e_cient and efficientlylearnable

when the d2 distance measure isused. However, because of the nature of

the d2 function, a difl'erentlearning algorithm isneeded. Suppose A. isthe

actual Bernoulli probabilityand A' isthe hypothesized model. Then in the

limit of large t,the log-likelihoodvalues converge as follows:

t-* logLCX' lA.) -_ A. log A. + (I - A.) log(1 - A.)

t-* log L(X' IA') -. A. log A'+ (1 - A.)log(l - A').

If0<A.<landA,=0or 1, then

d2(A'IA.) = A. IogCA./A')+ (1 - A.) log[(1- A.)/(I - A')]

Thus, ifA. issmall and our sample sizeisalso small, we may not observe

any 1%; but ifwe guess A' = 0, our error willbe infinitelylarge.

To avoid this,we modify our procedure _ follows. Let a = c/(1 + 2e),

and define t' to be 2-"/3 if t < 2-", or L(a/2) • 2"J • 2-" otherwise. As

before, we observe at least

(11)

inputs. Then, if t, is the number of 1% in the sample, we shall guess A' to

be the nearest multiple of 2-" to

• (t,/t),ifz < 2-";

• min[(t,/t) + a/2,1/2] if 2t, _< t;

• max[(t,/t) - a/2, 1/2] if2t, > t

The first case is identical to that given earlier for d,, so we need not consider

it further. In the other two cases, we are adjusting our estimate A' toward

_,' and away from 0 or 1.

To see why this achieves the desired _pproximation, assume that 0 _<

A. _< 21. (The case _ _< A. _< 1 is symmetric to this one and handled
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similarly.) The value t has been chosen so that with probability > 1 - 6,

I(t_/t) - A.[ < a/2. By adding a/2 to the estimate tl/t, the procedure

adjusts the estimate so that _.. __ 3_e < _. + a (with high probability).

Writing A' __ A. + z, with 0 < z < a, we have

d,(A'] _,.) -- ,k.log(,k./(,k• +z) + (1- ,k.)log[(1- _,.)/(1- _. - z)]
_< (] - _.)2og[O- :_.)/(] - _. - _)1

1 - A. 1]-< 0-,_.) x-_.-z
¢I

1 - 2a
"-- E,
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